1584. Min Cost to Connect All Points
這一題如果不用 UnionFind 的確會有點難做。
class UnionFind:
def __init__(self, size):
self.group = [0] * size
self.rank = [0] * size
for i in range(size):
self.group[i] = i
def find(self, x):
if self.group[x] != x:
self.group[x] = self.find(self.group[x])
return self.group[x]
def join(self, x, y):
rootX = self.find(x)
rootY = self.find(y)
if self.rank[rootX] > self.rank[rootY]:
self.group[rootY] = rootX
elif self.rank[rootX] < self.rank[rootY]:
self.group[rootX] = rootY
else:
self.group[rootX] = rootY
self.rank[rootY] += 1
def connected(self, x: int, y: int) -> bool:
return self.find(x) == self.find(y)
class Solution:
def minCostConnectPoints(self, points: List[List[int]]) -> int:
if not points:
return -1
def distance(p1, p2):
return abs(p1[0] - p2[0]) + abs(p1[1] - p2[1])
heap = []
for i in range(len(points)):
p1 = points[i]
for j in range(i + 1, len(points)):
p2 = points[j]
d = distance(p1, p2)
heapq.heappush(heap, (d, i, j))
uf = UnionFind(len(points))
total = 0
n = 0
while heap:
d, p1, p2 = heapq.heappop(heap)
if not uf.connected(p1, p2):
uf.join(p1, p2)
total += d
n += 1
if n == len(points) - 1:
break
return total